Pillole: “Appunti di spettroscopia” – Parte III

Introduzione

Nell’articolo precedente si è esaminato più nel dettaglio l’effetto della diffrazione. Generalmente lo spettro luminoso, per essere analizzato nelle sue componenti, viene diviso per messo di in mezzo disperdente. Il più semplice mezzo disperdente è il prisma: di questo ci occuperemo tra un attimo. Altre possibilità sono costituite da un reticolo olografico o da un reticolo di diffrazione. In questo articolo ci occuperemo della teoria alla base di tali mezzi.


1 – Funzionamento dei prismi

Alla base del funzionamento dei prismi risiede il fenomeno della rifrazione. Tuttavia occorre procedere con ordine. I prismi sono tipicamente triangolari con l’angolo al vertice variabile da 45° a 60°. Essi servono a dividere la luce nelle sue componenti (fig.1).

appunti di spettroscopia III - fig1
Figura 1
Figura 2
Figura 2

Questo è dovuto al fatto che in realtà alcuni materiali presentano una rifrazione differenziale per le diverse lunghezze d’onda. Tale comportamento è detto dispersione (fig.2). Poiché n è una funzione della lunghezza d’onda, la legge di Snell indica che l’angolo di rifrazione quando la luce entra in un materiale dipende dalla lunghezza d’onda della luce. Generalmente (fig.2) l’indice di rifrazione di un materiale diminuisce all’aumentare della lunghezza d’onda. Quando un raggio monocromatica entra nel prisma con un angolo al vertice, detto anche angolo di rifrangenza, Φ questo viene deviato di un certo angolo δ in seguito alla rifrazione (fig.3). Se invece il raggio incidente è in luce bianca le sue varie componenti subiranno una rifrazione differenziale a seconda della lunghezza d’onda. Ciò significa che la luce viola (λ ≈ 400nm) sarà rifratta di più della luce rossa (λ ≈ 650nm). A causa della rifrazione le diverse lunghezze d’onda assumeranno angoli δ diversi e ciò porta alla risoluzione dello spettro visibile.

Figura 3
Figura 3

2 – Reticolo di diffrazione

Il reticolo di diffrazione è uno strumento molto più utile nell’analisi della radiazione luminosa rispetto al prisma, tanto che oggigiorno costituiscono la maggior parte dei monocromatori negli spettroscopi. A questa categoria appartengono i reticoli di diffrazione in riflessione (reticoli di diffrazione propriamente detti) e quelli in trasmissione (reticoli olografici). La teoria alla base è la medesima. Mediamente i reticoli professionali possono avere un grandissimo numero di linee a distanza ravvicinata: per esempio un reticolo contenente 5000righe/cm ha una separazione tra le fenditure d = ({1 \over 5000}) = 2,00\cdot 10^{-4}cm. Ogni fenditura si comporta come una sorgente di onde che partono tutte in fase. Tuttavia, come si è visto nella “Parte II” sullo schermo ci saranno punti in cui sullo schermo si riscontrerà interferenza costruttiva ed altri con interferenza distruttiva. Come si è visto la condizione necessaria per avere le onde in fase sul punto di arrivo è che differiscano per un multiplo intero della lunghezza d’onda (fig.4):

\delta = d\sin\theta_{if} = m\lambda \hspace{3cm} m = 0, \pm1, \pm2, \ldots

Figura 4
Figura 4

Se la radiazione incidente contiene diverse lunghezze d’onda, per ognuna si esse il massimo si trova ad un angolo determinato in funzione di λ. Questo è esattamente ciò che accade nello StarAnalyser100 usato dal gruppo per risolvere lo spettro dei corpi celesti (fig.5).

Figura 5
Figura 5
Figura 6
Figura 6

Questo reticolo è montato su un comune filtro da 1.25″. Presenta 100 linee/cm e dà la possibilità di acquisire con un CCD spettri a bassa risoluzione di oggetti celesti (stelle, nebulose o galassie). Come per i reticoli precedenti presenta uno spettro del primo ordine  corrispondente all’oggetto celeste. Sono presenti anche in questo caso gli spettri di ordine m = \pm1, \pm2. \ldots (fig.6). Per le analisi bisogna registrare lo spettro di m = +1, che fra i due è quello più brillante.

Lascia un commento